organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1)

Wen-Wen Dong,^{a,b} Dong-Sheng Li,^{a,b}* Jun Zhao,^{a,b} Long Tang^b and Xiang-Yang Hou^b

^aCollege of Mechanical & Materials Engineering, Three Gorges University, Yichang 443002, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, ShaanxiKey Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, People's Republic of China Correspondence e-mail: lidongsheng1@126.com

Received 17 September 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.074; wR factor = 0.232; data-to-parameter ratio = 12.8.

In the title compound, $C_{13}H_{14}N_2 \cdot C_{14}H_{10}O_5$, a 1:1 cocrystal of 1,3-di-4-pyridylpropane (bpp) and 4,4'-oxydibenzoic acid (H₂oba), the dihedral angle between the two benzene rings of the flexible H₂oba molecule is 57.07 (1)°; the two pyridine rings of bpp make a dihedral angle of 27.52 (1)°. Strong intermolecular O-H···N hydrogen bonds link the molecules into chains, which are then linked into a three-dimensional network through intermolecular C-H···O and π - π stacking interactions [centroid–centroid distance = 3.7838 (3) Å].

Related literature

For the use of co-crystallization reactions in developing new methodologies in supramolecular synthesis, see: Desiraju (2003); Shan *et al.* (2002). For hydrogen bonding and π - π stacking in molecular synthesis, see: Shattock *et al.* (2005). For a related structure, see: Ma *et al.* (2006). An independent determination of this structure is reported in the preceeding paper (Li *et al.*, 2008).

Experimental

Crystal data $C_{13}H_{14}N_2 \cdot C_{14}H_{10}O_5$ $M_r = 456.48$

 $M_r = 456.48$ Triclinic, $P\overline{1}$ a = 6.8927 (12) Å b = 11.5788 (19) Å c = 14.974 (3) Å $\alpha = 86.638 (3)^{\circ}$ $\beta = 81.205 (3)^{\circ}$ $\gamma = 73.963 (3)^{\circ}$ $V = 1134.9 (3) \text{ Å}^{3}$ Z = 2Mo K α radiation

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.966, T_{\max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.073$ 309 parameters $wR(F^2) = 0.232$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.64$ e Å $^{-3}$ 3965 reflections $\Delta \rho_{min} = -0.22$ e Å $^{-3}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.034$

 $0.38 \times 0.20 \times 0.16$ mm

5767 measured reflections

3965 independent reflections 1530 reflections with $I > 2\sigma(I)$

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots N2^{i}$	0.82	1.86	2.679 (5)	174
O5−H5···N1 ⁱⁱ	0.82	1.75	2.566 (5)	175
C4−H4···O3 ⁱⁱⁱ	0.93	2.55	3.418 (6)	155
$C5-H5A\cdots O3^{iv}$	0.93	2.48	3.160 (6)	130
$C12-H12\cdots O4^{v}$	0.93	2.45	3.174 (7)	135

Symmetry codes: (i) x - 1, y, z - 1; (ii) x + 1, y + 1, z; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z + 1; (v) x, y - 1, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was financially supported by the National Natural Science Foundation of China (No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Key Project of the Chinese Ministry of Education (208143) and the Important Project of Hubei Provincial Education Office (09HB81).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2224).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.

Li, G., Salim, C. & Hinode, H. (2008). Acta Cryst. E64, o2251.

Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-o1166.

Shan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett. 43, 3101-3104.

Shattock, T. R., Vishweshwar, P., Wang, Z. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 2046–2049.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

Acta Cryst. (2008). E64, o2252 [doi:10.1107/S1600536808034971]

1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1)

W.-W. Dong, D.-S. Li, J. Zhao, L. Tang and X.-Y. Hou

Comment

Co-crystallization reactions provide helpful means for probing the importance and balance between different intermolecular interactions, and thus offer practical guidelines for developing new methodologies in supramolecular synthesis (De-siraju,2003; Shan *et al.*, 2002). The role of hydrogen bonding and π - π stacking for these purposes is well established (Shattock *et al.*,2005). We attempted to synthesize a Cd^{II} complex with the mixed ligand using hydrothermal synthesis conditions. However, we were not successful and a new co-crystal, (bpp)(H₂oba)(I), was isolated instead and its structure is reported here. A similar structure has been reported (Ma *et al.*, 2006) and an independent determination of the structure of (I) is reported in the preceeding paper (Li *et al.*, 2008).

The asymmetric unit consists of one bpp and one H₂oba as shown in Fig 1. The dihedral angle between the two phenyl rings of the flexible H₂oba molecule is 57.07°, while it is 27.52° for the two phenyl rings of the bpp. The COOH group(O4—C27—O5) is co-planar with the phenyl ring and the other COOH group(O2—C20—O3) is slightly twisted with a the twist angle is 10.507 (8)°. In (I), the protonated carboxylate O2 of the flexible H₂oba molecule forms two kinds of strong intermolecular hydrogen bonds with atoms N1 and N2 of the bpp molecule (Table 1), linking the molecules into one-dimensional chains. C—H…O hydrogen bonds involving the bpp carbon atoms (C4,C5 and C12) and uncoordinated carboxy oxygen atoms (O3 and O4) provide additional attractive forces between adjacent chains. Furthermore, there are π - π aromatic stacking interactions involving bpp ligands of adjacent units [centroid-centroid distance = 3.7838 (3) Å] that taken together with the C-H…O interactions form a three-dimensional supramolecular motif (Fig. 2).

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. H₂oba (0.5 mmol, 0.129 g), Cd(CH₃COO)₂.2H₂O(1.5 mmol, 0.400 g), bpp(0.5 mmol, 0.099 g) and water (15 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 453 K for five days, and then cooled slowly to 298 K at which time colourless crystals were obtained. The crystal used for data collection was obtained directly from the reaction mixture on cooling without further re-crystallization.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 ?and O—H = 0.82 ?) and allowed to ride on their parent atoms, with $U_{iso}(H)$ values equal to $1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. The structure of (I), with the atom-numbering scheme for the asymmetric unit, showing displacement ellipsoids at the 30% probability level.

Fig. 2. Supramolecular network formed by hydrogen-bonding and π - π stacking interactions.

1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1)

Crystal data	
$C_{27}H_{24}N_2O_5$	Z = 2
$M_r = 456.48$	$F_{000} = 480$
Triclinic, PT	$D_{\rm x} = 1.336 {\rm ~Mg~m}^{-3}$
<i>a</i> = 6.8927 (12) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>b</i> = 11.5788 (19) Å	$\theta = 1.8 - 25.1^{\circ}$
c = 14.974(3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 86.638 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 81.205 \ (3)^{\circ}$	Prism, colorless
$\gamma = 73.963 \ (3)^{\circ}$	$0.38 \times 0.20 \times 0.16 \text{ mm}$
$V = 1134.9 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	3965 independent reflections
Radiation source: fine-focus sealed tube	1530 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 293(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -4 \rightarrow 8$
$T_{\min} = 0.966, T_{\max} = 0.985$	$k = -11 \rightarrow 13$
5767 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.074$	H-atom parameters constrained
$wR(F^2) = 0.232$	$w = 1/[\sigma^2(F_o^2) + (0.09P)^2 + 0.05P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
3965 reflections	$\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$
309 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	-0.1091 (7)	-0.1160 (4)	0.5739 (3)	0.0694 (12)
N2	0.6798 (6)	0.1948 (4)	0.9734 (2)	0.0664 (12)
01	0.6076 (5)	0.3326 (3)	0.2752 (2)	0.0738 (10)
02	-0.0318 (6)	0.1895 (3)	0.0761 (2)	0.0776 (11)
H2	-0.1262	0.1911	0.0483	0.116*
O3	-0.1240 (6)	0.3872 (3)	0.0493 (2)	0.0835 (12)
O4	0.5299 (6)	0.7923 (3)	0.5091 (3)	0.0970 (13)
05	0.8627 (5)	0.7071 (3)	0.4860 (3)	0.0918 (12)
Н5	0.8652	0.7642	0.5152	0.138*
C1	0.6402 (8)	0.1023 (4)	0.9399 (3)	0.0731 (15)
H1	0.7252	0.0259	0.9485	0.088*
C2	0.4779 (8)	0.1132 (4)	0.8923 (3)	0.0720 (15)
H2A	0.4552	0.0449	0.8711	0.086*
C3	0.3505 (7)	0.2248 (4)	0.8766 (3)	0.0563 (12)
C4	0.3945 (7)	0.3207 (4)	0.9109 (3)	0.0665 (14)
H4	0.3132	0.3982	0.9026	0.080*
C5	0.5569 (8)	0.3026 (4)	0.9570 (3)	0.0717 (15)
H5A	0.5836	0.3696	0.9783	0.086*
C6	0.1679 (7)	0.2448 (4)	0.8272 (3)	0.0726 (15)
H6A	0.0457	0.2712	0.8707	0.087*
H6B	0.1705	0.3100	0.7837	0.087*
C7	0.1503 (7)	0.1392 (4)	0.7780 (3)	0.0723 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7A	0.1395	0.0749	0.8213	0.087*
H7B	0.2735	0.1103	0.7355	0.087*
C8	-0.0324 (7)	0.1698 (4)	0.7273 (3)	0.0658 (14)
H8A	-0.1547	0.1987	0.7703	0.079*
H8B	-0.0214	0.2351	0.6849	0.079*
C9	-0.0580 (7)	0.0684 (4)	0.6761 (3)	0.0579 (13)
C10	-0.2435 (7)	0.0733 (4)	0.6501 (3)	0.0617 (13)
H10	-0.3557	0.1381	0.6664	0.074*
C11	-0.2627 (8)	-0.0177 (5)	0.6000 (3)	0.0684 (14)
H11	-0.3895	-0.0112	0.5829	0.082*
C12	0.0675 (8)	-0.1175 (4)	0.5988 (3)	0.0741 (15)
H12	0.1782	-0.1829	0.5818	0.089*
C13	0.1000 (8)	-0.0295 (4)	0.6480 (3)	0.0710 (15)
H13	0.2295	-0.0365	0.6622	0.085*
C14	0.1947 (7)	0.4155 (4)	0.1356 (3)	0.0669 (14)
H14	0.1244	0.4808	0.1035	0.080*
C15	0.3456 (8)	0.4285 (4)	0.1817 (3)	0.0679 (14)
H15	0.3811	0.5007	0.1787	0.081*
C16	0.4428 (7)	0.3329 (4)	0.2322 (3)	0.0600 (13)
C17	0.3950 (7)	0.2251 (4)	0.2337 (3)	0.0686 (15)
H17	0.4633	0.1602	0.2668	0.082*
C18	0.2452 (7)	0.2132 (4)	0.1858 (3)	0.0642 (14)
H18	0.2123	0.1403	0.1876	0.077*
C19	0.1451 (7)	0.3072 (4)	0.1360 (3)	0.0520 (12)
C20	-0.0181 (8)	0.3011 (5)	0.0835 (3)	0.0645 (14)
C21	0.6111 (8)	0.4317 (4)	0.3224 (3)	0.0572 (12)
C22	0.4418 (8)	0.5167 (4)	0.3598 (3)	0.0655 (14)
H22	0.3126	0.5129	0.3518	0.079*
C23	0.4631 (7)	0.6079 (4)	0.4093 (3)	0.0618 (13)
H23	0.3483	0.6667	0.4336	0.074*
C24	0.6554 (7)	0.6123 (4)	0.4232 (3)	0.0533 (12)
C25	0.8227 (7)	0.5255 (4)	0.3868 (3)	0.0659 (14)
H25	0.9519	0.5276	0.3962	0.079*
C26	0.8021 (7)	0.4350 (4)	0.3364 (3)	0.0656 (13)
H26	0.9168	0.3763	0.3120	0.079*
C27	0.6727 (9)	0.7134 (5)	0.4775 (3)	0.0678 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.055 (3)	0.088 (3)	0.072 (3)	-0.025 (3)	-0.024 (2)	0.011 (2)
N2	0.069 (3)	0.065 (3)	0.075 (3)	-0.024 (2)	-0.024 (2)	-0.006 (2)
O1	0.070 (2)	0.069 (2)	0.090 (3)	-0.0147 (18)	-0.036 (2)	-0.0197 (18)
O2	0.090 (3)	0.060 (2)	0.098 (3)	-0.0266 (19)	-0.045 (2)	-0.0052 (17)
03	0.088 (3)	0.066 (2)	0.105 (3)	-0.015 (2)	-0.055 (2)	0.007 (2)
O4	0.073 (3)	0.086 (3)	0.132 (3)	-0.001 (2)	-0.034 (3)	-0.050 (2)
O5	0.071 (3)	0.096 (3)	0.119 (3)	-0.026 (2)	-0.027 (2)	-0.041 (2)
C1	0.084 (4)	0.060 (3)	0.086 (4)	-0.025 (3)	-0.032 (3)	-0.002 (3)

C2	0.086 (4)	0.061 (3)	0.082 (4)	-0.027 (3)	-0.035 (3)	-0.005 (3)
C3	0.058 (3)	0.056 (3)	0.058 (3)	-0.019 (3)	-0.011 (3)	-0.011 (2)
C4	0.058 (3)	0.057 (3)	0.087 (4)	-0.013 (3)	-0.019 (3)	-0.013 (3)
C5	0.073 (4)	0.059 (3)	0.089 (4)	-0.019 (3)	-0.022 (3)	-0.015 (3)
C6	0.068 (4)	0.072 (3)	0.083 (4)	-0.021 (3)	-0.020 (3)	-0.014 (3)
C7	0.074 (4)	0.074 (3)	0.080 (4)	-0.027 (3)	-0.026 (3)	-0.013 (3)
C8	0.062 (3)	0.072 (3)	0.069 (3)	-0.018 (3)	-0.025 (3)	-0.012 (3)
C9	0.058 (4)	0.067 (3)	0.053 (3)	-0.018 (3)	-0.020 (3)	-0.004 (2)
C10	0.059 (4)	0.059 (3)	0.071 (3)	-0.012 (3)	-0.026 (3)	-0.008 (2)
C11	0.054 (4)	0.080 (3)	0.079 (4)	-0.019 (3)	-0.032 (3)	-0.001 (3)
C12	0.062 (4)	0.071 (3)	0.084 (4)	-0.007 (3)	-0.008 (3)	-0.019 (3)
C13	0.055 (4)	0.075 (3)	0.085 (4)	-0.010 (3)	-0.021 (3)	-0.026 (3)
C14	0.078 (4)	0.059 (3)	0.070 (3)	-0.019 (3)	-0.030 (3)	-0.001 (2)
C15	0.079 (4)	0.063 (3)	0.077 (4)	-0.033 (3)	-0.029 (3)	-0.003 (3)
C16	0.066 (4)	0.059 (3)	0.062 (3)	-0.018 (3)	-0.024 (3)	-0.009 (2)
C17	0.075 (4)	0.056 (3)	0.080 (4)	-0.012 (3)	-0.034 (3)	-0.005 (3)
C18	0.074 (4)	0.047 (3)	0.080 (4)	-0.021 (3)	-0.027 (3)	-0.003 (2)
C19	0.055 (3)	0.050 (3)	0.055 (3)	-0.016 (2)	-0.014 (2)	-0.010 (2)
C20	0.066 (4)	0.063 (3)	0.071 (4)	-0.022 (3)	-0.019 (3)	-0.007 (3)
C21	0.062 (4)	0.058 (3)	0.059 (3)	-0.021 (3)	-0.021 (3)	-0.002 (2)
C22	0.049 (3)	0.079 (3)	0.075 (4)	-0.021 (3)	-0.019 (3)	-0.009 (3)
C23	0.056 (3)	0.060 (3)	0.068 (3)	-0.002 (3)	-0.026 (3)	-0.011 (2)
C24	0.057 (3)	0.060 (3)	0.050 (3)	-0.020 (3)	-0.017 (3)	-0.005 (2)
C25	0.050 (3)	0.078 (3)	0.075 (4)	-0.024 (3)	-0.008 (3)	-0.020 (3)
C26	0.047 (3)	0.072 (3)	0.076 (4)	-0.009 (3)	-0.010 (3)	-0.018 (3)
C27	0.065 (4)	0.070 (4)	0.075 (4)	-0.019 (3)	-0.025 (3)	-0.007 (3)

Geometric parameters (Å, °)

N1—C12	1.321 (6)	C9—C13	1.372 (6)
N1—C11	1.352 (6)	C9—C10	1.379 (5)
N2—C1	1.320 (5)	C10-C11	1.375 (6)
N2—C5	1.333 (5)	С10—Н10	0.9300
O1—C16	1.387 (5)	C11—H11	0.9300
O1—C21	1.390 (5)	C12—C13	1.376 (6)
O2—C20	1.333 (5)	С12—Н12	0.9300
O2—H2	0.8200	С13—Н13	0.9300
O3—C20	1.201 (5)	C14—C15	1.378 (6)
O4—C27	1.200 (5)	C14—C19	1.387 (5)
O5—C27	1.317 (6)	C14—H14	0.9300
О5—Н5	0.8200	C15—C16	1.376 (6)
C1—C2	1.388 (6)	C15—H15	0.9300
C1—H1	0.9300	C16—C17	1.374 (6)
C2—C3	1.377 (6)	C17—C18	1.384 (6)
C2—H2A	0.9300	С17—Н17	0.9300
C3—C4	1.374 (5)	C18—C19	1.365 (6)
C3—C6	1.513 (6)	C18—H18	0.9300
C4—C5	1.365 (6)	C19—C20	1.487 (6)
C4—H4	0.9300	C21—C22	1.369 (6)

С5—Н5А	0.9300	C21—C26	1.375 (6)
C6—C7	1.505 (5)	C22—C23	1.378 (5)
С6—Н6А	0.9700	C22—H22	0.9300
С6—Н6В	0.9700	C23—C24	1.387 (6)
С7—С8	1.518 (6)	С23—Н23	0.9300
С7—Н7А	0.9700	C24—C25	1.367 (6)
С7—Н7В	0.9700	C24—C27	1.505 (6)
C8—C9	1.502 (5)	C25—C26	1.377 (6)
C8—H8A	0.9700	C25—H25	0.9300
C8—H8B	0.9700	C26—H26	0.9300
C12—N1—C11	114.4 (4)	N1—C12—H12	117.5
C1—N2—C5	116.0 (4)	C13—C12—H12	117.5
C16—O1—C21	121.5 (4)	C9—C13—C12	120.3 (5)
С20—О2—Н2	109.5	С9—С13—Н13	119.9
С27—О5—Н5	109.5	С12—С13—Н13	119.9
N2—C1—C2	123.2 (5)	C15—C14—C19	121.6 (4)
N2—C1—H1	118.4	C15—C14—H14	119.2
C2—C1—H1	118.4	C19—C14—H14	119.2
C3—C2—C1	120.3 (4)	C16—C15—C14	118.8 (4)
С3—С2—Н2А	119.9	С16—С15—Н15	120.6
C1—C2—H2A	119.9	C14—C15—H15	120.6
C4—C3—C2	116.0 (4)	C17—C16—C15	120.3 (4)
C4—C3—C6	120.2 (4)	C17—C16—O1	115.6 (4)
C2—C3—C6	123.8 (4)	C15-C16-O1	123.7 (4)
C5—C4—C3	120.2 (4)	C16—C17—C18	120.0 (4)
C5—C4—H4	119.9	С16—С17—Н17	120.0
C3—C4—H4	119.9	C18—C17—H17	120.0
N2—C5—C4	124.2 (4)	C19—C18—C17	120.7 (4)
N2—C5—H5A	117.9	C19—C18—H18	119.6
C4—C5—H5A	117.9	C17—C18—H18	119.6
C7—C6—C3	116.9 (4)	C18—C19—C14	118.5 (4)
С7—С6—Н6А	108.1	C18—C19—C20	123.6 (4)
С3—С6—Н6А	108.1	C14—C19—C20	117.9 (4)
С7—С6—Н6В	108.1	O3—C20—O2	123.2 (4)
С3—С6—Н6В	108.1	O3—C20—C19	123.7 (5)
H6A—C6—H6B	107.3	O2—C20—C19	113.1 (4)
C6—C7—C8	112.9 (4)	C22—C21—C26	120.2 (4)
С6—С7—Н7А	109.0	C22—C21—O1	124.9 (4)
С8—С7—Н7А	109.0	C26—C21—O1	114.7 (4)
С6—С7—Н7В	109.0	C21—C22—C23	119.9 (4)
С8—С7—Н7В	109.0	C21—C22—H22	120.0
H7A—C7—H7B	107.8	C23—C22—H22	120.0
C9—C8—C7	115.6 (4)	C22—C23—C24	120.2 (4)
С9—С8—Н8А	108.4	C22—C23—H23	119.9
С7—С8—Н8А	108.4	C24—C23—H23	119.9
С9—С8—Н8В	108.4	C25—C24—C23	119.2 (4)
С7—С8—Н8В	108.4	C25—C24—C27	122.1 (4)
H8A—C8—H8B	107.4	C23—C24—C27	118.7 (5)
C13—C9—C10	116.1 (4)	C24—C25—C26	120.8 (4)

C13—C9—C8	123.2 (4)	C24—C25—H25	119.6
C10—C9—C8	120.6 (4)	C26—C25—H25	119.6
C11—C10—C9	120.1 (4)	C21—C26—C25	119.7 (5)
C11—C10—H10	120.0	C21—C26—H26	120.1
C9—C10—H10	120.0	C25—C26—H26	120.1
N1-C11-C10	124.2 (4)	O4—C27—O5	123.2 (5)
N1-C11-H11	117.9	O4—C27—C24	124.1 (5)
C10-C11-H11	117.9	O5—C27—C24	112.7 (5)
N1-C12-C13	125.0 (5)		
C5—N2—C1—C2	-1.8 (7)	C15—C16—C17—C18	-1.5 (8)
N2-C1-C2-C3	1.2 (8)	O1—C16—C17—C18	-174.2 (4)
C1—C2—C3—C4	-0.4 (7)	C16-C17-C18-C19	0.8 (8)
C1—C2—C3—C6	-178.7 (5)	C17-C18-C19-C14	-1.0 (7)
C2—C3—C4—C5	0.4 (7)	C17-C18-C19-C20	-179.6 (4)
C6—C3—C4—C5	178.8 (4)	C15-C14-C19-C18	2.1 (7)
C1—N2—C5—C4	1.8 (7)	C15—C14—C19—C20	-179.3 (4)
C3—C4—C5—N2	-1.1 (8)	C18—C19—C20—O3	170.0 (5)
C4—C3—C6—C7	169.8 (4)	C14—C19—C20—O3	-8.5 (7)
C2—C3—C6—C7	-11.9 (7)	C18—C19—C20—O2	-11.6 (7)
C3—C6—C7—C8	-177.5 (4)	C14—C19—C20—O2	169.8 (4)
C6—C7—C8—C9	179.6 (4)	C16—O1—C21—C22	24.9 (7)
C7—C8—C9—C13	-23.0(7)	C16—O1—C21—C26	-160.3 (4)
C7—C8—C9—C10	160.9 (4)	C26—C21—C22—C23	2.0(7)
C13—C9—C10—C11	0.9 (7)	O1—C21—C22—C23	176.6 (4)
C8—C9—C10—C11	177.2 (4)	C21—C22—C23—C24	-1.5 (7)
C12-N1-C11-C10	-1.6 (7)	C22—C23—C24—C25	0.2 (7)
C9-C10-C11-N1	0.8 (7)	C22—C23—C24—C27	179.9 (4)
C11—N1—C12—C13	0.8 (7)	C23—C24—C25—C26	0.5 (7)
C10-C9-C13-C12	-1.7 (7)	C27—C24—C25—C26	-179.2 (4)
C8—C9—C13—C12	-177.9 (4)	C22—C21—C26—C25	-1.3 (7)
N1-C12-C13-C9	0.9 (8)	O1—C21—C26—C25	-176.4 (4)
C19—C14—C15—C16	-2.8 (8)	C24—C25—C26—C21	0.0 (7)
C14-C15-C16-C17	2.4 (8)	C25—C24—C27—O4	178.6 (5)
C14-C15-C16-O1	174.5 (4)	C23—C24—C27—O4	-1.1 (8)
C21—O1—C16—C17	-144.3 (4)	C25—C24—C27—O5	-0.5 (7)
C21—O1—C16—C15	43.3 (7)	C23—C24—C27—O5	179.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H2···N2 ⁱ	0.82	1.86	2.679 (5)	174
O5—H5…N1 ⁱⁱ	0.82	1.75	2.566 (5)	175
C4—H4···O3 ⁱⁱⁱ	0.93	2.55	3.418 (6)	155
C5—H5A···O3 ^{iv}	0.93	2.48	3.160 (6)	130
C12—H12…O4 ^v	0.93	2.45	3.174 (7)	135

Symmetry codes: (i) *x*-1, *y*, *z*-1; (ii) *x*+1, *y*+1, *z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*+1; (v) *x*, *y*-1, *z*.

Fig. 2